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Some Predictions are Difficult
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One of Leibniz’s Views on Prediction

“If someone could have a 
sufficient insight into the inner 
parts of things, and in addition had 
remembrance and intelligence 
enough to consider all the 
circumstances and to take them 

www.nasa.gov

circumstances and to take them 
into account, he would be a 
prophet and would see the future 
in the present as in a mirror.”

From ChaosBook.org and Wikipedia
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Some Predictions are Easy
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Run-2

Lyapunov Exponents and the Limits on Predictability

0.0125 % change in initial 
condition in one state variable
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R u n - 1

R u n - 2

The Edge of Chaos
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Extreme Shred Metal
www.edgeofchaos.us
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Applications to Laser Systems

• Develop a set of algorithms for prognostics using data from 
a well-studied ammonium laser system that has chaotic 
behavior.

• Predict the future dynamics of this system

www.nasa.gov

• Generate a signal that represents the confidence in the 
prediction.
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The Need for Prognostics
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NH3 Laser Model

Lorenz-Hankel Model

( )xy
dt

dx
−= σ

xzyrx
dt

dy
−−=

One can approximate the dynamical behavior of the laser using 

ideas from nonlinear dynamical systems.

www.nasa.gov

dt

bzxy
dt

dz
−=

Control Parametersbr ,,σ

Nonlinear  terms

2.0=σ 05.0<q
15=r

25.0=b

The values of sigma, r, b 

and q determine the 

nature of the chaotic 

attractor.



National Aeronautics and Space Administration

150

200

250

In
te
n
si
ty

Lorenz-Hankel Model

collapse

www.nasa.gov

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

Sample points (time axis)

In
te
n
si
ty



National Aeronautics and Space Administration

Any random function is a GP, if is a random 

vector which is normally distributed for all                  .

Gaussian Process (GP)

( ) ( ) ( ){ }nxfxfxf ,...,, 21

( ) ( ) ( )( ) ( )( )jinn xxCxmNxxxxfxfxfp ,),(,...,,,...,, 2121 =

nxxx ,...,, 21

www.nasa.gov

( )xm ( )
ji xxC ,

1×n nn×

Each function is characterized by its mean          and variance
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Gaussian Process Regression Chooses the Best 
Function to Explain a Data Set
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The Covariance Function Determines the Fit
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Gaussian Process Regression Example
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Example: When the process is stationary

Assumption: function smooth & continuous

( ) ( )  −D kk xx
2

1

Mean (here zero).constm =
Input dimension

Example Covariance Functions

Gaussian
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Approach

• Using delay coordinate embedding (and thus Takens’ 
Theorem) we build a Gaussian Process Regression 
(GPR) to predict:

( ) ( ) ( ) ( )( ) ( ) ( )( )tXtXPdtXtXtXtXP *1,....,1,1 +=−−+

www.nasa.gov

• Once this distribution is known, we can make predictions 
through iterating the distribution.

( ) ( ) ( ) ( )( ) ( ) ( )( )tXtXPdtXtXtXtXP *1,....,1,1 +=−−+

Embedding dimension
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One Step Ahead Predictions

GP

www.nasa.gov

GP
( ) ( )( )tXtXP *1+( )tX *
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Iterated Predictions

GP ( ) ( )( )12 * ++ tXtXP

www.nasa.gov

GP

i.e., we feed the output of the model into its input to make a prediction of 

From past prediction iteration

( )tX * ( ) ( )( )tXtXP *1+

( ) ( )( )12 ++ tXtXP

( ) ( ) ( ) ( ) ( )( )[ ]( ) ( ) ( )( )121,....,1,,12 * ++=+−−++ tXtXPdtXtXtXtXPtXP
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Prediction uncertainty
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Prognosis signal

Collapse point

Prediction signal leads the actual collapse point by 24 sample points
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GP

NET

K-NN

Cumulative Error Curves
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Results

• We have shown that we can make iterated forecasts and 
detect a precursor to the sudden drop in intensity using 
kernel methods.

• We can generate a meaningful measure of prediction 

www.nasa.gov

• We can generate a meaningful measure of prediction 
certainty.

• This quantity seems to indicate substantial increases in 
uncertainty near the collapse.
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Structural Application

• Presence of partially closed cracks in objects can be identified using 
an ultrasonic technique. (Ref: K Yamanaka)

• Interaction of high amplitude ultrasonic waves with closed cracks 

generate subharmonic components.

 
NM

σσ

Characteristic length 
of crack plane
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• The vibration of the Crack Opening Displacement (COD) exhibits 
chaotic behavior if: 

COD
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Further Work

• Understanding the limits of predictability for these 
systems and for other non-time based predictive models

• Significant testing with respect to forecast variability and 
quality of precursor detection.

www.nasa.gov

quality of precursor detection.

• Analysis of forecast horizon and comparison with 
Lyapunov Time.

• Test methods on data from aircraft systems.
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IVHM Data Mining Lab

www.nasa.gov



National Aeronautics and Space Administration

Mission of the IVHM Data Mining Lab

The lab enables the dissemination of Integrated Vehicle Health
Management data, algorithms, and results to the public. It will serve as a
national asset for research and development of discovery algorithms for
detection, diagnosis, prognosis, and prediction for NASA missions.

www.nasa.gov
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Features of the IVHM Data Mining Lab

Datasets

• Propulsion, structures, simulation 
and modeling

• ADAPT Lab 

• Icing

• Electrical Power Systems

• Systems Analysis 

Selected Discovery Tools

• Inductive Monitoring System 
(IMS) – cluster-based anomaly 
detection

• Mariana – Text classification 
algorithm

www.nasa.gov

• Systems Analysis 

• Flight and subscale systems

• Fleet-wide data

• Multi-carrier data 

Open Source

• Code

• Papers

• Generation of an IVHM community

algorithm

• Orca – Distance-based outlier 
detection

• ReADS – Recurring anomaly 
detection system for text

• sequenceMiner – anomaly 
detection for discrete state and 
mode changes in massive data 
sets.
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Key Research Issues Addressed in the 
IVHM Data Mining Lab

• Real-time anomaly detection 

• Model-free prediction methods

• Hybrid methods that combine discrete and continuous data

• Distributed and privacy-preserving data mining

• Analysis of integrated systems

www.nasa.gov

• Analysis of integrated systems
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Appendix
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NH3 Laser Phenomena

• The laser undergoes periods of buildup of intensity 
followed by a sudden collapse in intensity.  

• Sometimes the collapse is significant, and other times it is 
relatively small.

• It is hard to predict what type of collapse will occur (i.e., it 
is a chaotic process).

www.nasa.gov

is a chaotic process).
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Statistical Comparison of GP’s and Neural Networks
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K-step ahead forecasts

• We iterate the Gaussian Process K times to generate 
this time series.

• Performance comparison

» Bagged Neural Networks

» Linear Model

www.nasa.gov

» Linear Model

• Forecasting metric:  

normalized mean squared error
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Method

• We address this problem using the theory of Gaussian 
Processes which assumes that any subset of data for a 
vector X is Gaussian distributed (from wikipedia).

www.nasa.gov

Using characteristic functions of random variables, we can formulate the 

Gaussian property as follows:{Xt}t ∈ T is Gaussian if and only if for every finite 

set of indices t1, ..., tk there are positive reals σl j and reals µj such that

The numbers σl j and µj can be shown to be the covariances and means of the 

variables in the process.
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